закрыть
Товаров: Нет
На сумму: 0 руб.
+7(495)
с 8:00 до 22:00 (без выходных)
контактная информация

В аудитории слабый искусственный свет


Эффект Даннинга — Крюгера — Википедия

Материал из Википедии — свободной энциклопедии

Эффект Да́ннинга — Крю́гера — метакогнитивное искажение, которое заключается в том, что люди, имеющие низкий уровень квалификации, делают ошибочные выводы, принимают неудачные решения и при этом неспособны осознавать свои ошибки в силу низкого уровня своей квалификации[1]. Это приводит к возникновению у них завышенных представлений о собственных способностях, в то время как действительно высококвалифицированные люди, наоборот, склонны занижать оценку своих способностей и страдать от недостаточной уверенности в своих силах, считая других более компетентными. Таким образом, менее компетентные люди в целом имеют более высокое мнение о собственных способностях, чем это свойственно людям компетентным (которые к тому же склонны предполагать, что окружающие оценивают их способности так же низко, как и они сами). Также люди с высоким уровнем квалификации ошибочно полагают, что задачи, которые для них легки, так же легки и для других людей [2].

Гипотеза и экспериментальная проверка[править | править код]

Гипотеза о существовании подобного феномена была выдвинута в 1999 году Джастином Крюгером и Дэвидом Даннингом, которые при этом ссылались на высказывания:

  • Чарлза Дарвина — «Уверенность чаще порождается невежеством, нежели знанием»[3] и
  • Бертрана Рассела — «Одно из неприятных свойств нашего времени состоит в том, что те, кто испытывает уверенность, глупы, а те, кто обладает хоть каким-то воображением и пониманием, исполнены сомнений и нерешительности»[4].

Для проверки выдвинутой гипотезы Крюгер и Даннинг провели серию экспериментов с участием студентов — слушателей курсов по психологии в Корнеллском университете. При этом они исходили из результатов исследований своих предшественников, которые показали, что некомпетентность во многом проистекает из незнания основ той или иной деятельности, будь то понимание прочитанного, управление автомобилем, игра в шахматы, игра в теннис и т. п.

Ими была выдвинута гипотеза, что для людей с низкой квалификацией в любом виде деятельности характерно следующее:

  1. Они склонны переоценивать собственные умения.
  2. Они неспособны адекватно оценивать действительно высокий уровень умений у других.
  3. Они неспособны осознавать всю глубину своей некомпетентности.
  4. После обучения у них появляется способность осознать уровень своей прежней некомпетентности, даже если их истинная компетентность после обучения практически не меняется.

Результаты экспериментов, подтвердивших выдвинутую гипотезу, были опубликованы на английском языке в декабре 1999 года в Журнале психологии личности и социальной психологии[1].

За это исследование авторам статьи была присуждена Шнобелевская премия по психологии за 2000 год[5].

Результаты других подобных исследований были представлены в 2003[6] и 2008[4] годах.

Хотя сам принцип был сформулирован в 1999 году, авторы отмечают схожие наблюдения у философов и учёных:

  • Лао-цзы («Знающий не говорит, говорящий не знает»),
  • Конфуция («Истинное знание — в том, чтобы знать пределы своего невежества»),
  • Сократа («Я знаю, что ничего не знаю»),
  • Бакунина («…именно лучшие люди бывают менее всего убеждены в своих собственных заслугах; даже если они сознают их, то им обычно претит навязывать себя другим, между тем как дурные и средние люди, всегда собою довольные, не испытывают никакого стеснения в самопрославлении» [7])

а также в вышеприведённых высказываниях Бертрана Рассела и Чарльза Дарвина.

В Библии есть высказывание апостола Павла: «Кто думает, что он знает что-нибудь, тот ничего ещё не знает так, как до́лжно знать» (1Кор. 8:2).

Гераинт Фуллер (англ. Geraint Fuller) в своём комментарии к статье отметил[8], что аналогичная мысль высказана в произведении Уильяма Шекспира «Как вам это понравится»:

Дурак думает, что он умён, а умный человек знает, что он глуп.[9]

Оригинальный текст (англ.)

The Foole doth thinke he is wise, but the wiseman knowes himselfe to be a Foole. (V.i)

«Специалист подобен флюсу: полнота его односторонняя»

Среди людей, знающих об эффекте Даннинга — Крюгера, встречается непонимание сути этого психологического феномена. Первое заблуждение — о том, что эффект работает только на «некомпетентном» человеке. В действительности это когнитивное искажение присуще каждому человеку. Во-первых, специалист в одной области человеческих знаний является дилетантом в другой области и может не подозревать об этом. Во-вторых, даже в пределах одной конкретной области склонность к переоценке своего уровня свойственна большинству людей, включая людей со средним уровнем компетенции и выше, просто у более компетентных людей ошибка в оценке будет меньше. И лишь самое меньшинство, наиболее компетентные люди, могут недооценивать свой уровень. [10].

  1. 1 2 Kruger, Justin; David Dunning. Unskilled and Unaware of It: How Difficulties in Recognizing One's Own Incompetence Lead to Inflated Self-Assessments (англ.) // Journal of Personality and Social Psychology : journal. — 1999. — Vol. 77, no. 6. — P. 1121—1134. — doi:10.1037/0022-3514.77.6.1121. — PMID 10626367.
  2. Katherine A. Burson, Richard P. Larrick, Joshua Klayman. Skilled or unskilled, but still unaware of it: How perceptions of difficulty drive miscalibration in relative comparisons. (англ.) // Journal of Personality and Social Psychology. — 2006. — Vol. 90, iss. 1. — P. 60—77. — ISSN 0022-3514 1939-1315, 0022-3514. — doi:10.1037/0022-3514.90.1.60.
  3. Darwin, Charles. Introduction // The Descent of Man : [англ.] : [арх. 10 апреля 2012]. — 1871. — P. 4.
  4. 1 2 Ehrlinger, J. Why the Unskilled Are Unaware : Further Explorations of (Absent) Self-Insight Among the Incompetent : [англ.] / J. Ehrlinger, K. Johnson, M. Banner … [] // Organizational behavior and human decision processes. — 2008. — Vol. 105, no. 1. — P. 98—121. — doi:10.1016/j.obhdp.2007.05.002. — PMID 19568317. — PMC 2702783.
  5. ↑ The 2000 Ig Nobel Prize Winners (англ.) (недоступная ссылка). Improbable Research. Дата обращения 9 апреля 2012. Архивировано 26 января 2013 года.
  6. Dunning, David. Why people fail to recognize their own incompetence / David Dunning, Kerri Johnson, Joyce Ehrlinger … [] // Current Directions in Psychological Science. — Vol. 12, no. 3. — P. 83−87. — doi:10.1111/1467-8721.01235.
  7. Бакунин М.А. Федерализм, социализм и антитеологизм. — М.: T8 RUGRAM, 2019. — С. 120—121. — 152 с. — (Навстречу революции). — ISBN 978-5-517-00991-3.
  8. Fuller, Geraint. Ignorant of ignorance? (неопр.) // Practical Neurology (англ.)русск.. — 2011. — Т. 11, № 6. — С. 365. — doi:10.1136/practneurol-2011-000117. — PMID 22100949.
  9. ↑ перевод Т. Л. Щепкиной-Куперник
  10. Steven Novella. Misunderstanding Dunning-Kruger (англ.). The New England Skeptical Society (8 January 2019).

ru.wikipedia.org

Освещение школьных классов и учебных аудиторий / Habr

Методический материал для руководств учебных заведений, сотрудников технического надзора и родительских комитетов. Будет интересен всем, кто интересуется качеством световой среды в помещениях, где он учится, работает и живет.

Рис. 1. Пример параметров световой среды в классной комнате, с люминесцентными лампами не соответствующей требованиям СП 52.13330.2016 цветопередачи Ra(CRI) < 60 и с устаревшими электромагнитными ПРА, из-за которых коэффициент пульсации освещенности превышает 30 %. Использован спектрометр Uprtek mk350n и люксметр-яркомер-пульсметр ЕЛАЙТ02

Содержит требования к документально подтверждаемым и проверяемым параметрам световой среды, шаблон протокола осмотра систем освещения и рекомендации по устранению несоответствий.

1. Требования к световой среде

Световая среда — совокупность измеряемых или описываемых влияющих на человека факторов окружающей среды, связанных с освещением.

1.1. Общие требования к параметрам световой среды для классов и учебных аудиторий

1.2. Дополнительные требования к светодиодным светильникам

2. Параметры световой среды: описание и способы определения

Параметры световой среды можно измерить или проконтролировать. Несоответствие является основанием для корректирующих действий.

2.1 Средний уровень освещенности парт в соответствии с СанПиН 2.2.4.3359-16 не должен быть ниже 400 лк. Минимальная освещенность парт не должна быть ниже 90 % этой нормы.

Причиной несоответствия может быть постепенное снижение светового потока люминесцентных ламп. Если в помещении не работает более одной люминесцентной лампы, скорее всего, лампы заменяются при выходе из строя, а не по графику. В таком случае необходим приборный контроль освещенности.

Для визуального комфорта разница освещенности парт неважна, но доска должна быть освещена не хуже парт. По СП 52.13330.2016 освещенность центра доски не менее 500 лк. Часто норма не соблюдается из-за того, что для доски нет отдельного светильника. Общим освещением выполнить норму можно, увеличив количество потолочных светильников в полтора раза. Чего, конечно, не делается. И хорошо освещенные дети смотрят на плохо освещенную доску.

В вузах отдельного требования к освещенности доски нет.

Единственный способ определить освещенность — измерить люксметром из реестра средств измерений со свидетельством о поверке или сертификатом о калибровке. Люксметры, не имеющие таких документов, могут ошибаться на десятки процентов. А программы для смартфона, якобы измеряющие освещенность, ошибаются в несколько раз.

Рис. 2. Светотехнический расчет школьного класса в программе Dialux

Освещенность рассчитывается с помощью программы Dialux [1] (рис. 2) или вручную [2].
Размеры, расстановка парт и даже цвет стен в учебных учреждениях определены санитарными требованиями и однотипны. Это позволяет использовать упрощенную унифицированную методику оценки средней освещенности E парт. Для этого нужно суммарный световой поток F потолочных светильников разделить на площадь класса S и дополнительно умножить на поправочный коэффициент 0,6:

.
2.2. Коэффициент пульсации освещенности — параметр, влияющий на утомляемость зрения. Питание светильника переменным сетевым напряжением приводит к пульсациям освещенности под светильником с частотой 100 Гц. Пульсации незаметны, но затрудняют перевод и удерживание взгляда [3]. Глубина пульсаций зависит от источника питания светильника, ее можно измерить портативным люксметром-пульсметром.

СанПиН 2.2.1/2.1.1.1278-03 устанавливают требования к уровню пульсаций освещенности в классных комнатах не выше 10 %; а в соответствии с ПП РФ № 1356 с 1 января 2020 года пульсации светового потока вновь приобретаемого осветительного оборудования должны быть не выше 5 %.

Коэффициент пульсаций люминесцентных ламп старого типа с электромагнитным ПРА (ЭмПРА) — 40…45 %, ламп накаливания — 10…15 %. У современных светодиодных светильников — обычно не выше 1…3 %. Однако и среди светодиодных светильников встречаются модели с упрощенным источником питания и пульсациями, не соответствующими нормам.

Высокий уровень пульсаций проявляется, когда светильник снимают на камеру смартфона (по изображению идут темные полосы), и виден на карандашном тесте (движущийся на фоне светильника карандаш, как под стробоскопом, будто замирает в некоторых положениях (рис. 3)).

Рис. 3. Уровень пульсаций 45,5 % освещенности для люминесцентного светильника с электромагнитным ПРА. И вызываемый этими пульсациями стробоскопический эффект при карандашном тесте [3].

Смартфон и карандаш — не средства измерения, результаты таких «проверок» показывают проблему, но не имеют юридической силы, однако являются достаточным основанием для измерения пульсаций с помощью прибора.

2.3. Индекс цветопередачи Ra ≥ 80 (или CRI ≥ 80) характеризует качество света, зрительный и эмоциональный комфорт. Он зависит от количества цветов радуги в спектре, определяет количество цветовых оттенков в сцене и соответствие этих оттенков тем, что видны под естественным освещением. Использование света высокой цветопередачи улучшает качество жизни, позволяет видеть больше и яснее. Использование источников света с низкой цветопередачей приводит к общему гнетущему впечатлению [4].

Рис. 4. Пример лампы с цветовым кодом в маркировке 765, что означает цветопередачу Ra = 70 и цветовую температуру КЦТ = 6500 К

CRI (color rendering index) — система индексов цветопередачи. Ra — наиболее важный общий индекс, значение которого нормируется. Правильно говорить о значении Ra, но производители светильников в паспорте часто пишут «CRI», не уточняя, что идет речь об Ra.

Для учебных классов и аудиторий СанПиН 2.2.1/2.1.1.1278-03 и СП 52.13330.2016 устанавливают норму Ra ≥ 80. Приобретение люминесцентных ламп с индексом цветопередачи менее 80 для государственных учреждений (школ, вузов, больниц и пр.) запрещает п. 2 Постановления Правительства РФ № 898 от 28 августа 2015 г., а использование светодиодных светильников с индексом цветопередачи менее 80 ограничено п. 24 Постановления Правительства РФ № 1356 от 10 ноября 2017 г.

Люминесцентные лампы и светодиодные светильники выпускаются с Ra ≥ 80, Ra ≥ 90 и даже Ra ≥ 95. Источники света с повышенной цветопередачей применяются при особенных требованиях к качеству света, к примеру в школьной художественной студии.

Наблюдения за тем, как выглядит, к примеру, кожа ладони под дневным светом и искусственным освещением, позволяют «на глаз» отличать свет с низкой и высокой цветопередачей. Но этот метод неточен. Значение цветопередачи можно определить только с помощью спектрометра.

2.4. Коррелированная цветовая температура (КЦТ), или цветовая температура, не выше 4000 К —важное требование. Холодный белый (т. е. с синим оттенком) свет цветовых температур 5000, 6000, 6500 К и т. д., особенно при низкой цветопередаче и освещенности, воспринимается как синюшный или «слепой» свет. А избыточное содержание синей компоненты в спектре вызывает нарекания у специалистов по нарушениям сна.

Теплый (т. е. с желтым оттенком) свет цветовой температуры 2700 или 3000 К допускается, но нравится не всем, так как кажется недостаточно ярким. Теплый свет целесообразно использовать вечером, но утром и днем при недостаточном уровне естественного освещения провоцирует сонливость и снижение работоспособности.

Не все предпочитают выраженно теплый или холодный свет. Нейтральный белый свет без синего или желтого оттенка с цветовой температурой 4000 К — обоснованный компромисс, устраивающий большинство. Это значение указывалось в рекомендациях гигиенистов, на основе которых составлялись нормативные документы. Свет этой цветовой температуры чаще других используют в общественных помещениях.

4000 К — типовое округленное значение, которому по ГОСТ Р 54350-2015 «Приборы осветительные. Светотехнические требования и методы испытаний» соответствует диапазон 3710…4260 К. Этот допуск обоснован естественным разбросом параметров источников и разницей температуры света, идущего от светильника под разными углами. Поэтому если в паспорте указано 4000 К, а прямой замер спектрометром показывает, к примеру, 4100 К — несоответствия нет. Для сравнения с нормативом необходимо округлить значение КЦТ 4100 К до 4000 К и уже округленное значение должно соответствовать условию «не выше 4000 К».

Необходимо отметить, что требование к цветовой температуре не выше 4000 К устанавливается только для светодиодных светильников письмом Роспотребнадзора № 01/11157-12-32. Для люминесцентных светильников таких ограничений закон не устанавливает.

Так как устанавливается не конкретное значение цветовой температуры, а диапазон, возможно использование осветительных приборов с автоматически изменяемой цветовой температурой в течение суток.

2.5. Условный защитный угол светодиодных светильников не менее 90° означает запрет потолочных светильников, в которых видны не закрытые рассеивателем светодиоды.

Рис. 5. Слева направо: рассеиватель из матового пластика; из прозрачного пластика с призматическим тиснением; из прозрачного пластика с тиснением «колотый лед»

Рассеиватели из прозрачного пластика с тиснением в виде призм, «колотого льда», шагрени и пр. в некоторых случаях недостаточно снижают неприятную яркость светодиодов. Потолочные светильники с такими рассеивателями светят преимущественно под себя, в результате чего свет в помещении идет сверху вниз, создавая тягостное впечатление «как в колодце».

Рассеиватели из светорассеивающего пластика — матовые (диффузные, опаловые или молочные), обеспечивают больший зрительный комфорт, равномернее освещают рабочие поверхности и лучше освещают вертикальные поверхности. При выборе нового оборудования целесообразно выбирать матовые рассеиватели.

2.6. Габаритная яркость светодиодных светильников не выше 5000 кд/м2 — условие, позволяющее смотреть на светильник без визуального дискомфорта. Такая яркость по порядку величины соответствует видимой изнутри помещения яркости оконного проема в солнечный день.

Для потолочных светильников с рассеивателем из матового пластика размерами 600 × 600 мм или 300 × 1200 мм габаритная яркость не превышает допустимые 5000 кд/м2, если световой поток не превышает 5000 лм. Этому требованию удовлетворяют почти все подобные светильники.

2.7. Условие неравномерности яркости светодиодных светильников Lmax:Lmin не более 5:1 является требованием использовать рассеиватель, за которым не видно неприятно ярких светодиодов.

Рис. 6. Светодиодный светильник и измерение неравномерности его яркости. Яркость измерена дистанционным яркомером LMK Mobile Advanced

Даже если ряды светодиодов через рассеиватель видны, но рассеиватель изготовлен из матового или опалового пластика, однородность яркости обычно соответствует требуемой.

Контраст яркостей на улице в солнечный день многократно превышает 5:1 и не является большой проблемой. Поэтому если пятна яркости на рассеивателе светодиодного светильника визуально не кажутся значительно ярче светящейся трубки люминесцентной лампы, то и беспокоиться об этом не следует.

2.8. Объединенный показатель дискомфорта UGR характеризует, как много светильников, вызывающих дискомфорт своей яркостью, находится в поле зрения ребенка. Самое большое значение UGR обычно для задних парт в больших классах.

UGR проверяется расчетом в специализированных программах, таких как Dialux, и не может быть проверен после установки светильников в классе.

Если проанализировать требования к расстановке парт и размерам класса из СанПиН 2.4.2.2821-10, окажется, что наиболее неблагоприятный для величины UGR случай — длинный класс с максимальным допустимым расстоянием от дальней парты до доски 8,6 м и тремя рядами двойных парт. На рис. 8 показан расчет UGR в таком классе, освещенном светильниками с довольно большим световым потоком 3600 лм и матовыми рассеивателями. Даже на последних рядах UGR не превысил максимально допустимое значение UGR = 19 из имеющего рекомендательный характер ГОСТ Р 55710-2013 и тем более соответствует требованию UGR ≤ 21 из обязательного к применению СП 52.13330.2016.

В маленьких классах с менее яркими светильниками или с другими типами рассеивателей UGR будет еще меньше. Расчет для худших условий показывает, что нет необходимости рассчитывать UGR для остальных классов, в которых он будет принимать еще меньшие, заведомо соответствующие норме значения.

Рис. 7. Расчет UGR для наиболее неблагоприятного случая в программе Dialux. UGR меняется от UGR = 12 на передних рядах до UGR = 18 для учеников на задней парте по центру, в поле зрения которых одновременно находится максимальное количество светильников

3. Что учесть при замене осветительного оборудования

3.1. Модернизация люминесцентных светильников

Недостаточная освещенность и низкая цветопередача исправляются заменой ламп. Предпочтительный цветовой код новых ламп — 840 (что означает Ra ≥ 80, КЦТ = 4000 К) или, если желательна повышенная цветопередача, 940.

Высокий коэффициент пульсаций светового потока исправляется заменой в люминесцентных светильниках электромагнитных ПРА (дросселей) на электронные, которые обеспечивают минимальные пульсации.

3.2. Замена люминесцентных светильников на светодиодные

О возможности использования светодиодных светильников в школах и вузах указано в письмах Роспотребнадзора № 01/11157-12-32 от 01.10.2012 «Об организации санитарного надзора за использованием энергосберегающих источников света» и № 01/6110-17-32 от 17.05.2017 «О возможности использования светодиодного освещения».

Светодиодный светильник при том же световом потоке потребляет минимум вдвое, а обычно втрое меньше электроэнергии, чем люминесцентный старого типа с электромагнитным ПРА. А параметры световой среды получаются не хуже, чем при использовании современных светильников с электронными ПРА и хорошими люминесцентными лампами.

Без ремонта потолка квадратные люминесцентные светильники легко заменяются на квадратные светодиодные, а вытянутые — на вытянутые.

3.3. Сертификация

Все светильники обязаны пройти сертификацию на соответствие требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования» и ТР ТС 020/2011 «Электромагнитная совместимость технических средств» либо декларировать такое соответствие. Копия сертификата или декларации соответствия предоставляется производителем и должна храниться вместе с паспортами на светильники. Действительность сертификата проверяется в едином реестре сертификатов соответствия Федеральной службы по аккредитации по адресу 188.254.71.82/rss_ts_pub, действительность декларации проверяется по адресу pub.fsa.gov.ru/rds/declaration. Свидетельством того, что при сертификации светильники действительно проходили необходимые испытания, являются копии протоколов испытаний.

Наличие таких документов означает, что светильник не «ударит током» и что работа светильников в здании не помешает работе чувствительной к сетевым помехам техники.

С 2021 года вступает в силу технический регламент ТР ЕАЭС 048/2019 «О требованиях к энергетической эффективности энергопотребляющих устройств», по которому устанавливаются обязательные требования светоотдачи (энергоэффективности), качества света (индекс цветопередачи) и ряд других эксплуатационных параметров. Сертификация по данным требованиям будет производиться на основании протоколов испытаний в фотометрических лабораториях.

Также есть добровольные (необязательные) формы сертификатов и заключений, подтверждающих что светильники «пахнут», «звучат» или «стимулируют развитие микрофлоры». К качеству, безопасности или эффективности освещения эти бумаги отношения не имеют.

В настоящее время не существует систем сертификации, подтверждающих, что светильник рекомендован для учебных заведений. Никто не вправе выставлять такие требования или давать такие рекомендации.

3.4. Требования к светильникам

Чтобы параметры световой среды в классе соответствовали установленным законом требованиям и не поступало обоснованных жалоб на «плохое освещение», светильник должен соответствовать следующим условиям:

  1. Индекс цветопередачи: Ra ≥ 80 или CRI ≥ 80.
  2. Коэффициент пульсации освещенности (или светового потока): Кп ≤ 5 %.
  3. Коррелированная цветовая температура: КЦТ = 4000 К, или КЦТ менее 4000 К, или КЦТ, изменяемая в течение суток.
  4. Тип рассеивателя: матовый (или опаловый).
  5. Условный защитный угол: не менее 90° (т. е. не видно открытых светодиодов).
  6. Габаритная яркость: не более 5000 кд/м2.
  7. Неравномерность яркости выходного отверстия Lmax:Lmin не более 5:1.

Для светодиодного светильника обязательно выполнение всех требований, для люминесцентного светильника обязательны пункты 1 и 2 и желательно выполнение пункта 3.

Желательно, чтобы необходимые параметры указывались в паспорте светильника, так как паспорт является документальным подтверждением соответствия нормативам и при выявленном несоответствии позволяет требовать гарантийной замены оборудования.

3.5. Необходимое количество светильников

При установке новых светильников на места старых «один в один» освещенность не уменьшится, если световой поток новых светильников не ниже светового потока старых.

Если количество светильников меняется, необходимое количество новых светильников для достижения освещенности на партах не менее 400 лк можно определить по методике из п. 2.1.
Важное значение имеет эффективность, или световая отдача, светильника. Нельзя добиваться нужной освещенности, используя большое количество низкоэффективных светильников. В проекте межгосударственного стандарта ГОСТ 32498—20хх «Методы определения показателей энергетической эффективности искусственного освещения помещений» приводится требование к удельной установленной мощности ω, равной отношению суммарной мощности светильников в помещении P к его площади S:


В классных комнатах и аудиториях при использовании светильников с люминесцентными лампами удельная установленная мощность не должна превышать 13 Вт/м2, а при использовании светодиодных светильников — 8 Вт/м2.

ПП РФ №1356 устанавливает с 1 января 2020 года требование к типичным школьным светодиодным светильникам с матовым рассеивателем — иметь световую отдачу не менее 105 лм/Вт. Этого значения с небольшим запасом достаточно, чтобы соблюсти требования и по указанной выше установленной мощности, и по освещенности.

3.6. Экономическая целесообразность замены светильников на светодиодные

Требование к установленной мощности при использовании люминесцентных светильников не более 13 Вт/м2 выполнимо только при использовании современных светильников, сопоставимых по стоимости со светодиодными. При этом, учитывая, что световая отдача светодиодных светильников все равно выше, целесообразно выбирать их.

Выбирая, оставить люминесцентные светильники старого типа или поставить светодиодные с меньшим энергопотреблением, нужно сравнить разницу цен на оборудование со стоимостью сэкономленной электроэнергии за предполагаемый срок службы.

Потребляемую за год электроэнергию Wгод можно рассчитать по формуле:


где P — суммарная мощность всех светильников в ваттах, tгод — время работы светильников за год в часах. По данным из проекта ГОСТ 32498—20хх, при 2-сменном режиме школы наработка tгод за год составляет 2250 часов.

При разнице энергопотребления в два раза и разумном сроке окупаемости светильников 3…5 лет стоимость замены может оказаться оправдана.

4. Юридические и этические аспекты

Проверить характеристики установленных светильников, а также создаваемую ими освещенность можно в темное время суток с помощью портативных приборов: люксметра, пульсметра и спектрометра. Протокол измерений имеет юридическую значимость, если приборы внесены в реестр средств измерений и имеют действующие свидетельства о поверке или калибровке.
В любом регионе есть представительства светотехнических компаний и лабораторий, которые по запросу пришлют в школу представителя с поверенными измерительными приборами.
Если люксметра, пульсметра и спектрометра найти не удалось, большинство параметров осветительной системы можно проверить на основании данных из паспортов светодиодных светильников и цветового кода в маркировке люминесцентных ламп.

Паспорта светильников, сертификаты соответствия и копии протоколов, на основе которых сертификаты выписаны, хранятся у завхоза или в бухгалтерии и могут быть затребованы для ознакомления. В паспортах должны быть приведены необходимые для составления протокола осмотра осветительной системы параметры. Дополнительным документом, иногда предоставляемым производителем, является протокол светотехнических испытаний светильника, подтверждающий указанные в паспорте характеристики. Этот комплект документов важен тем, что определяет ответственность производителя.

Выявленное несоответствие фактических, полученных измерениями, значений заявленным в паспортах светильников является основанием для гарантийной замены оборудования. Если производитель от ответственности отказывается, необходимо обратиться в Роспотребнадзор.
Если необходимые для соответствия санитарным нормам параметры в паспорте светодиодного светильника не указаны или указаны и не соответствуют нормативам, ответственность за несоответствие несет подписавший приказ о закупке.

Школа, возможно, не позволит представителям родительского комитета провести осмотр осветительной системы и не предоставит для ознакомления паспорта светильников, тем более для составления протокола. Но предложение родительского комитета такое обследование провести, несомненно, приведет к тому, что школа проведет обследование сама или закажет экспертизу. Что, в свою очередь, приведет к выявлению и устранению проблем.

Важно то, что определение несоответствия освещения нормативам не вызывает и не обостряет противостояния родители — школа, но направляет уже существующие отношения в конструктивное русло. Любые обстоятельства можно обсудить и решить ко всеобщему удовлетворению.

Если изменить не получается совсем ничего, можно согласиться с тем, что рано или поздно проведут капитальный ремонт здания и у следующего поколения учащихся освещение будет хорошим. А этому поколению вдобавок к высокой учебной нагрузке, чрезмерному использованию смартфонов и недостаточности прогулок придется пережить и низкое качество освещения.

5. Шаблон протокола осмотра осветительной системы

Пошаговое заполнение протокола осмотра позволяет найти проблемы осветительной системы и сделать однозначный вывод о необходимых мерах.

Если измерить некоторые параметры нет возможности, но расчет или экспресс-оценка показывают соответствие нормам, в протоколе отмечается, что претензий к этим параметрам нет. Результат оценки юридически не значим, но отсутствие претензий — значимо.

Рис. 6. Шаблон протокола осмотра. Ссылка на файл: yadi.sk/i/kVk2OAcyXMMFKw

Авторы, благодарности и список литературы
Авторы

Марина Ивановна Васильева, [email protected]; руководитель светотехнического отдела ООО «Арлайт Рус» Александр Дмитриевич Гончаров, [email protected]; Анна Вячеславовна Кистенева, [email protected]; главный конструктор ООО «Комплексные Системы» Станислав Александрович Лермонтов, [email protected]; ведущий специалист ОАО «АСТЗ» Андрей Алексеевич Храмов, [email protected]; международный консультант по энергоэффективности Программы развития ООН Анатолий Сергеевич Шевченко, [email protected]

Под редакцией Антона Сергеевича Шаракшанэ, к. ф.-м. н., МГМУ им. И. М. Сеченова, ИРЭ РАН, [email protected]

Данный документ имеет статус препринта, и опубликован для публичного обсуждения со всеми заинтересованными лицами и организациями.

Редакция v2.5 от 2020.01.28, лицензия: cc by

Благодарности

За помощь в работе выражаем благодарность родителям школьников Ивану и Светлане Черновым, Марии и Павлу Ярыкиным, Вадиму Григорову, главе представительства компании ERCO в России Роману Мильштейну, инженеру Владиславу Лямину.
Литература

[1] Лермонтов С. А. (2016). Освещение школьных и дошкольных учреждений глазами наивного дилетанта. Энергосовет. № 3 (45). www.energosovet.ru/bul_stat.php?idd=609
[2] Гончаров A. Д., Туев В. И. (2017). Универсальный метод расчета коэффициента использования светового потока осветительных приборов. Доклады ТУСУРа. Т. 20, № 2. journal.tusur.ru/ru/arhiv/2-2017/universalnyy-metod-rascheta-koeffitsienta-ispolzovaniya-svetovogo-potoka-osvetitelnyh-priborov
[3] Шаракшанэ А. С., Мамаев С. В., Нотфуллин Р. Ш., Порубов А. В. (2017). Фактические значения пульсации освещенности, создаваемой современными источниками света. Оптический журнал. opticjourn.ru/vipuski/1470-opticheskij-zhurnal-tom-84-01-2017.html
[4] (2015) Свет в нашей жизни. Минэнерго РФ minenergo.gov.ru/sites/default/files/texts/481/3679/Svet_v_Nashei_Zhizni_v3.5.pdf

habr.com

Автоматизация освещения в учебных учреждениях - Блог B.E.G.

По сети давно ходит забавный текст:

Закрой глаза и представь, что ты сидишь за партой и тут завуч заводит в класс нового ученика. С какой стороны он вошел?

Справа. Вход в класс всегда справа.

Почему вход в класс всегда справа? Потому что слева обычно окна.

Почему окна в классе всегда слева? Потому что свет должен падать слева.

Почему свет должен падать слева? Потому что свет на тетради не должен перекрываться пишущей рукой, а большинство учеников правши.

Почему большинство учеников правши? Потому что люди в основном правши.

Почему люди в основном правши? Потому что в правой руке издревле держали меч.

Почему меч держали в правой руке? Потому что в левой держали щит.

Почему щит держали в левой? Потому что щит защищал самое ценное — сердце, а оно слева.

Выходит, новичок зашел справа, потому у тебя сердце слева. Так вот и получается, что новые люди в твою жизнь приходят с той стороны, где у тебя нет сердца.

Проблемы освещения аудиторий и классных комнат

Шутки шутками, а освещение в аудиториях и классных комнатах действительно неравномерно. Окна располагаются только с одной стороны и освещенность помещения с той стороны всегда существенно лучше, чем у стены.

Помните, кого сажали у окна, да еще на первые парты? Правильно, тех учеников, которые имели нарушения зрения. Потому что в условиях хорошей освещенности глаза напрягаются меньше, а зрение, если и садится, то медленнее.

Если освещение не продумано и не спланировано грамотно, то в группу риска попадают те учащиеся, которые находятся дальше всех от источников света.

При проектировании системы освещения в учебных учреждениях этот факт обязательно нужно учитывать. К тому же нужно еще обязательно продумать управление освещением классной доской.

Решение

 

В идеальном варианте должен реализовываться следующий сценарий:

При присутствии в помещении людей измеряется освещенность в различных зонах аудитории — у стены, у окна. Искусственное освещение должно обеспечивать равномерное распределение света по всему помещению, с учетом того, что часть комнаты может быть больше освещена из окна с помощью естественного света.

Управление освещением у доски должно быть независимым от уровня общей освещенности.

Для решения этой задачи идеально подходит PD4-M-TRIO-DALI – это датчик присутствия для двух групп подсветки, контролирующий освещение в зависимости от интенсивности дневного света.

Датчик дополняем двумя независимыми подвижными сенсорами освещенности и дополнительным коммутационным выходом для подключения подсветки классной доски.

Если люди в помещении отсутствуют, то освещение отключается по истечению заранее запрограммированного времени задержки.

Пример реализации автоматизированного управления освещением

 

Помещение длиной 10 метров и шириной 6 метров.

Слева – окна, с торца – классная доска, справа – вход в аудиторию.

Разместив трехканальный датчик по центру потолка (можно немного сдвинуть его по центральной оси ближе к доске), мы делим помещение на две основные зоны – световая полоса у окна, световая полоса вдали от окна. Дополнительная зона — освещение у доски.

Рекомендуемые настройки датчика присутствия

Время задержки R1: > 10 мин.

Пороговое значение освещенности: 600 люкс или индивидуально с помощью дистанционного управления

Время задержки отключения R2: опционально

Возникли вопросы? Задавайте их в комментариях или пишите на e-mail. С удовольствием ответим, а также бесплатно поможем расставить датчики в вашем проекте. А чтобы не пропускать новые полезные материалы про автоматизацию освещения, подписывайтесь на наш блог.

comments powered by HyperComments

beg-russia.ru

5 базовых правил дизайна, следование которым сделает маленькую комнату просторной

Ребята, мы вкладываем душу в AdMe.ru. Cпасибо за то,
что открываете эту красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте

Психолог Дженнифер Кросс (Jennifer E. Cross) из Университета Колорадо уверена: куда больше чем размер помещения на человека влияет его обстановка. При правильном подборе отделки, мебели и декора можно визуально увеличить пространство комнаты на треть, а это уже неплохо.

AdMe.ru собрал 5 наиболее действенных способов добавить несколько квадратных метров при помощи дизайнерских решений.

1. Светлая база и яркие акценты

Ремонт в скандинавском стиле идеально подходит для небольшой комнаты, поскольку он создает впечатление открытого, наполненного воздухом пространства. Стены и потолок необязательно должны быть чисто белыми, главное — выбирать светлые пастельные тона. Яркие сочные краски и темные элементы лучше оставить для декора или второстепенных предметов мебели: полок, комодов.

Вот еще несколько важных нюансов для отделки маленького помещения:

  • Глянцевая краска или обои предпочтительнее матовых — блики отраженного света зрительно увеличивают размер помещения.
  • Холодные оттенки визуально расширяют пространство, в отличие от теплых.
  • Орнаменты на обоях или декоративных панелях допустимы, но только маленькие — крупные узоры подходят исключительно для больших помещений.
  • Узоры из ромбов или прямоугольников на полу заставляют взгляд «споткнуться», лучше выбирать однотонное светлое покрытие.
  • Зонирование цветом стен не лучший вариант для нескольких квадратных метров, потому что это дробит пространство на еще более мелкие части.
  • Раздвижные двери вместо обычных сэкономят место и позволят разместить мебель вплотную ко входу.

2. «Невесомая» мебель

Основное правило при подборе мебели для маленькой комнаты — она не должна загромождать пространство, которого и без того немного.

Вот что действительно поможет визуально расширить стены и «поднять» потолок:

  • Стеклянная и акриловая мебель (столик, полки) выглядит очень воздушной и не крадет ни метра пространства. Не бойтесь использовать стекло — если оно качественное и закаленное, биться и повреждаться такая мебель не будет.
  • Диван и шкаф на ножках — открытый пол воспринимается как продолжение свободной площади, даже если никак не используется. Интересная альтернатива — подвесная мебель, которая как будто парит в воздухе.
  • Открытые светлые стеллажи без боковых стенок пропускают свет и воздух, но не выглядят массивными.
  • Простые конструкции воспринимаются более миниатюрными (например, стандартная кровать подойдет для маленькой спальни лучше, чем софа с крупными подлокотниками и подушками).
  • Постарайтесь расставить мебель вплотную к стенам, чтобы сэкономить площадь в центральной части комнаты.

3. Игра с освещением

Освещение — один из основных инструментов дизайнеров интерьера. При помощи правильного освещения можно скорректировать определенные минусы:

  • «Поднять» потолок поможет ряд точечных светильников с направленными на него лучами света.
  • Расширит пространство отраженный и рассеянный свет: вместо одной люстры по центру потолка используйте несколько настенных светильников, свет которых будет отражаться на разных поверхностях.
  • Чтобы комната казалась более длинной, достаточно разместить настенные светильники в горизонтальный ряд на одной из коротких стен.

Использование торшеров и настенных бра наполняет пространство глубиной и объемом.

www.adme.ru

Требования к освещению. Требования к школам

Содержание:

Гигиенические требования к условиям обучения в общеобразовательных учреждениях. Часть 4

2.6. Требования к естественному и искусственному освещению

2.6.1. Естественное освещение. Учебные помещения должны иметь естественное освещение. Без естественного освещения допускается проектировать: снарядные, умывальные, душевые, уборные при гимнастическом зале; душевые и уборные персонала; кладовые и складские помещения (кроме помещений для хранения легковоспламеняющихся жидкостей), радиоузлы; кинофотолаборатории; книгохранилища; бойлерные, насосные водопровода и канализации; камеры вентиляционные и кондиционирования воздуха; узлы управления и другие помещения для установки и управления инженерным и технологическим оборудованием зданий; помещения для хранения дезсредств.

В учебных помещениях следует проектировать боковое левостороннее освещение. При двустороннем освещении, которое проектируется при глубине учебных помещений более 6 м, обязательно устройство правостороннего подсвета, высота которого должна быть не менее 2,2 м от потолка. При этом не следует допускать направление основного светового потока впереди и сзади от обучающихся.

В мастерских для трудового обучения, актовых и спортивных залах также может применяться двустороннее боковое естественное освещение и комбинированное (верхнее и боковое). В помещениях общеобразовательных учреждений обеспечиваются нормированные значения коэффициента естественной освещенности (КЕО) в соответствии с гигиеническими требованиями, предъявляемыми к естественному и искусственному освещению.

В учебных помещениях при одностороннем боковом естественном освещении КЕО должен быть 1,5% (на расстоянии 1 м от стены, противоположной световым проемам). Неравномерность естественного освещения помещений, предназначенных для занятий обучающихся, не должна превышать 3:1. Ориентация окон учебных помещений должна быть на южные, юго-восточные и восточные стороны горизонта. На северные стороны горизонта могут быть ориентированы окна кабинетов черчения, рисования, а также помещение кухни, ориентация кабинета информатики — на север, северо-восток.

Светопроемы учебных помещений оборудуются: регулируемыми солнцезащитными устройствами типа жалюзи, тканевыми шторами светлых тонов, сочетающихся с цветом стен, мебели. Шторы из поливинилхлоридной пленки не используются. В нерабочем состоянии шторы необходимо размещать в простенках между окнами. Для отделки учебных помещений используются отделочные материалы и краски, создающие матовую поверхность с коэффициентами отражения: для потолка — 0,7 — 0,8; для стен — 0,5 — 0,6; для пола — 0,3 — 0,5.

Следует использовать следующие цвета красок:

  • для стен учебных помещений — светлые тона желтого, бежевого, розового, зеленого, голубого;
  • для мебели (парты, столы, шкафы) — цвета натурального дерева или светло-зеленый;
  • для классных досок — темно-зеленый, темно-коричневый;
  • для дверей, оконных рам — белый.

Для максимального использования дневного света и равномерного освещения учебных помещений следует:

  • сажать деревья не ближе 15 м, кустарник — не ближе 5 м от здания;
  • не закрашивать оконные стекла;
  • не расставлять на подоконниках цветы. Их размещают в переносных цветочницах высотой 65-70 см от пола или подвесных кашпо в простенках окон;
  • очистку и мытье стекол проводить 2 раза в год (осенью и весной).

2.6.2. Искусственное освещение. В учебных помещениях обеспечиваются нормируемые уровни освещенности и показатели качества освещения (показатель дискомфорта и коэффициент пульсации освещенности) в соответствии с гигиеническими требованиями к естественному и искусственному освещению. В учебных помещениях предусматривается преимущественно люминесцентное освещение с использованием ламп: ЛБ, ЛХБ, ЛЕЦ. Допускается использование ламп накаливания (при этом нормы освещенности снижаются на 2 ступени шкалы освещенности). Не следует использовать в одном помещении люминесцентные лампы и лампы накаливания. Использование новых типов ламп и светильников согласовывается с территориальными центрами госсанэпиднадзора.

В учебных помещениях следует применять систему общего освещения. Светильники с люминесцентными лампами располагаются параллельно светонесущей стене на расстоянии 1,2 м от наружной стены и 1,5 м от внутренней. Для общего освещения учебных помещений и учебно-производственных мастерских следует применять люминесцентные светильники следующих типов: ЛС002-2х40, ЛП028-2х40, ЛП0022х40, ЛП034-4x36, ЦСП-5-2х40. Могут использоваться и другие светильники по типу приведенных с аналогичными светотехническими характеристиками и конструктивным исполнением. Классная доска оборудуется софитами и освещается двумя установленными параллельно ей зеркальными светильниками типа ЛПО-30-40-122(125). Указанные светильники размещаются выше верхнего края доски на 0,3 м и на 0,6 м в сторону класса перед доской.

При проектировании системы искусственного освещения для учебных помещений необходимо предусмотреть раздельное включение линий светильников. В учебных кабинетах, аудиториях, лабораториях уровни освещенности должны соответствовать следующим нормам: на рабочих столах — 300 лк, на классной доске — 500 лк, в кабинетах технического черчения и рисования — 500 лк, в кабинетах информатики на столах — 300 — 500 лк, в актовых и спортивных залах (на полу) — 200 лк, в рекреациях (на полу) — 150 лк. При использовании ТСО и необходимости сочетать восприятие информации с экрана и ведение записи в тетради — освещенность на столах обучающихся должна быть 300 лк.

При использовании диа- и кинопроекторов освещенность на столах обучающихся должна быть 500 лк. При этом следует использовать либо только одно местное освещение, либо создавать систему "функционального" искусственного освещения с "темным коридором" перед экраном.

Необходимо проводить чистку осветительной арматуры светильников не реже 2 раз в год и своевременно заменять перегоревшие лампы. Привлекать к этой работе обучающихся не следует. Неисправные, перегоревшие люминесцентные лампы собираются и вывозятся из здания общеобразовательного учреждения. В целях предупреждения возникновения массовых неинфекционных заболеваний (отравлений) хранение их в неприспособленных помещениях общеобразовательных учреждений запрещается (ст. 29, п. 1 Федерального закона "О санитарно — эпидемиологическом благополучии населения" от 30 марта 1999 г. N 52-ФЗ).

Профилактическое ультрафиолетовое облучение детей следует проводить в районах севернее 57,5 градуса с.ш. и в районах с загрязненной атмосферой. Для этого рекомендуется использовать облучательные установки длительного действия или кратковременного (фотарии) в соответствии с рекомендациями по проведению профилактического ультрафиолетового облучения людей с применением источников ультрафиолетового излучения.

Гигиенические требования к условиям обучения в общеобразовательных учреждениях. Часть 6

Очень вольное переложение СанПиНа и СНиПа, которое может ввести в заблуждение, а местами привести к грубым ошибкам: высота правостороннего подсвета в кабинетах более 6 м в глубину - 2,2м от пола, а не от потолка. В статье нет ни слова о продолжительности инсоляции в кабинетах, нет перечня кабинетов, в которых инсоляция не нормируется, ведь ориентация кабинетов еще не гарант инсоляции

2015-03-2525.03.2015 09:47:30, Алина Чебоксары

Всего 1 отзыв Прочитать все отзывы.

www.7ya.ru

Методы оценки освещения в помещениях — Википедия

Материал из Википедии — свободной энциклопедии

Эта статья или раздел описывает ситуацию применительно лишь к одному региону, возможно, нарушая при этом правило о взвешенности изложения.

Вы можете помочь Википедии, добавив информацию для других стран и регионов.

Методы оценки освещения

Освещение в помещении слагается из естественного и искусственного света. В связи с этим оценка освещения производится на основании оценки естественного и искусственного света в отдельности.[1]

Нормирование и гигиеническая оценка естественного освещения суммируется из анализа двух методов: светотехнического, то есть инструментального, и геометрического, то есть расчетного.

Светотехнический метод[править | править код]

Основной показатель светотехнического метода — коэффициент естественного освещения. Он определяется по формуле:

KEO=E1E2×100%{\displaystyle KEO={\frac {E1}{E2}}\times 100\%},

где E1 — освещение внутри помещения лм, E2 — освещение вне помещения лм[2].

В зависимости от типа помещения, вида деятельности, которое там производится, соответствуют нормы КЕО, которые изложены в СанПиН 2.2.1/2.1.1.1278-03 «Гигиенические требования к естественному, искусственному и совмещенному освещению жилых и общественных зданий» (утв. Главным государственным санитарным врачом РФ 6 апреля 2003 г.)[3]

Геометрический метод[править | править код]

Включает в себя 4 показателя:

Угол падения лучей освещения[править | править код]

Он должен быть равен не менее 27˚[4]

Угол отверстия[править | править код]

Образуется двумя линиями, исходящими из точки измерения. Первая проводится до верхнего края окна, вторая — к верхнему краю противостоящего здания. Норма — не менее 5˚.[4]

Световой коэффициент (СК)[править | править код]

Световой коэффициент (СК) — выражается отношением остекленной площади окон к площади пола данного помещения.

Коэффициент глубины заложения (КЗ)[править | править код]

Коэффициент глубины заложения (КЗ) — отношение расстояния от светонесущей поверхности до противоположной стороны к высоте от пола до верхнего края окна. В соответствии с нормами оно не должно превышать 2,5.[4]

Измерения искусственного освещения производится только в том случае, если отношение естественной освещенности к искусственной составляет менее 0,1.

Расчет яркости освещаемой поверхности[править | править код]

L=E×Kπ{\displaystyle L={\frac {E\times K}{\pi }}} кд/м²,

где E — освещённость, лм; K — коэффициент отражения поверхности.

Максимально допустимая яркость источник освещения, постоянно входящая в поле зрения человека — 2000 кд/м², редко попадающих в поле зрения — 5000 кд/м²[4]

Расчет коэффициента равномерности освещения[править | править код]

q=EEmax×100%{\displaystyle q={\frac {E}{E_{max}}}\times 100\%},

где E — освещённость в исследуемой точке, лм; Emax — максимальная освещённость в помещении.

В условиях равномерного освещения q=100 %. В норме, в норме Emax должно быть больше E не более чем в 3 раза.[источник не указан 1532 дня]

Расчетный метод «Ватт»[править | править код]

E=P×ET10K{\displaystyle E={\frac {P\times E_{T}}{10K}}},

где P — суммарная мощность светильников в помещении на единицу площади освещаемой поверхности (удельная мощность), Вт/м²; E — освещённость при удельной мощности 10 Вт/м²; K — коэффициент запаса.

  1. ↑ Гурова А. И., Горлова О. Е. Практикум по общей гигиене: Учебное пособие. — М.: Изд-во УДН, 1991.
  2. ↑ Измерения и гигиеническая оценка освещения рабочих мест. Методические указания МУ РБ 11.11.12 — 2002.
  3. ↑ СанПиН 2.2.1/2.1.1.1278-03
  4. 1 2 3 4 СНиП 23-05-95 «Естественное и искусственное освещение»
  • СНиП 23-05-95 «Естественное и искусственное освещение»
  • СанПиН 2.2.1/2.1.1.1278-03
  • Измерения и гигиеническая оценка освещения рабочих мест. Методические указания МУ РБ 11.11.12 — 2002.
  • Гурова А. И., Горлова О. Е. Практикум по общей гигиене: Учебное пособие. — М.: Изд-во УДН, 1991.

ru.wikipedia.org

Задача 5

Результаты гигиенического исследования естественного освещения в читальном зале библиотеки СтГМА следующие: угол падения = 34 0; угол отверстия = 70; световой коэффициент (СК) =1:4; КЕО = 2%.

1. Дайте обоснованное заключение о состоянии освещенности в помещении.

2.Укажите нормы естественного освещения для читального зала.

Ответ:

1.Для анализа состояния естественной освещенности в помещении необходимо сравнить фак тические показатели с гигиеническими нормативами.

2. Согласно гигиеническим требованиям КЕО для читального зала = не менее 1,25%; угол падения = не менее 27 0; угол отверстия = не менее 50; световой коэффициент (СК) = не менее 1:4 -1:5. Таким образом, естественная освещенность в читальном зале библиотеки достаточная.

Задача 6

Вас попросили оценить искусственную освещенность в учебной аудитории.

1. Как Вы это будете делать?

2. Что вам для этого необходимо?

3. Приведите соответствующие нормативы.

Ответ:Оценка искусственной освещенности проводится:

  1. Путем измерения уровня освещенности горизонтальной поверхности на рабочем месте люксметром в темное время суток при всех включенных лампах на высоте 0,8 м от пола;

  2. Измерение и оценка искусственной освещенности приближенным способом: суммируют мощность работающих ламп, делят на площадь помещения, полученную величину (удельная мощность) умножают на коэффициент (е) в зависимости от мощности, вида ламп и напряжения в сети.

3. Для учебной аудитории искусственная освещенность = не менее 300 лк (люминесцентными лампами) и не менее 200 лк (лампами накаливания).

Задача 7

Перед Вами результаты анализа воды из артезианской скважины:

Органолептические свойства хорошие

Окисляемость - 2 мг О2 /л Сульфаты - 300 мг/л

Азот аммонийный - 0,5 мг/л Хлориды - 450 мг/л

Азот нитритов - 0,001 мг/л Железо - 0.2 мг/л

Азот нитратов - 20,0 мг/л рН - 7

Содержание фтора - 1,0 мг/л

Микробное число -10 в 1 мл Коли титр - 500

1.Дайте обоснованное заключение о пригодности (непригодности) воды для питья.

2.Ваши предположения о причинах, вызвавших плохое качество воды, если Вы считаете ее непригодной.

3.Что следует предпринять в этом случае для улучшения ее качества?

Ответ:Так как вода из артезианской скважиной можно предположить, что в эпидемическом отношении она должна быть безопасна.

В целом вода имеет значительную минерализацию, в пределах, которые не препятствуют ее использованию для местного водоснабжения.

Повышено содержание аммонийного азота (норма 0,1 мг/л), хлоридов. Остальные показатели органического загрязнения находятся в пределах допустимых величин, что свидетельствует о минеральном происхождении его. В эпидемическом отношении вода безопасна.

Заключение: В связи с тем, что вода имеет хорошие органолептические свойства, безвредна по своему химическому составу и безопасна в эпидемическом отношении, она может быть использована для хозяйственно-питьевых целей без обработки.

studfile.net

Теплый или холодный свет в квартире? Выбирая… — Яндекс.Район

Теплый или холодный свет в квартире?

Выбирая осветительные приборы для своей квартиры, мы сталкиваемся с вопросом подбора подходящего цвета освещения. Чему отдать предпочтение, теплому белому свету или холодному? Однозначного ответа не существует, поскольку для отличающихся по своему предназначению помещений следует выбирать разное по интенсивности и цветовой температуре освещение.

Как цвет освещения влияет на находящихся в помещении людей?
Оптимальным для человеческих глаз считается естественный солнечный свет. Однако создать прибор с интенсивностью излучения, максимально приближенной к натуральной, у ученых до сих пор не вышло.

Не стоит волноваться, цвет освещения никак не влияет на человеческое зрение. Однако он оказывает определенное воздействие на наше психоэмоциональное состояние. Если холодный свет придает бодрости, помогает держаться в тонусе, то теплый – поможет расслабиться, и каждый из них уместен в определенной обстановке. Предлагаем разобраться в разнице между ними, чтобы понять, какой искусственный свет, теплый белый или холодный, следует выбрать.
Понятие цветовой температуры
Цветовой температурой в светотехнике называют характеристику, определяющую цветность ламп и цветовую тональность пространства, которое ими освещено. Эта величина указывается на упаковках источников света, измеряется в Кельвинах (К). Именно от нее зависит, холодное или теплое белое излучение будет производить лампочка.

Чем меньше значение температуры цвета, тем более желтым и теплым становится оттенок светового потока. Соответственно, при высоких показателях освещение будет становиться все более холодным, с голубым отливом. Описываемая величина имеет следующую градацию:

Белый теплый свет (2700–3500 в Кельвинах). Под этим понятием подразумевается бело-желтый поток, идеальный для жилых комнат, предназначенных для отдыха, столовых. Он способствует снижению работоспособности и расслаблению.

Нейтральный (3500–5000 К) – близок к естественному солнечному свету, идеален для гостиных, коридоров и общих комнат. Производимое такими лампами излучение не переутомляет глаз, не вызывает ощущения дискомфорта.
Холодный свет (5000–6000 в Кельвинах). Излучаемый осветительными приборами поток имеет синевато-белый цвет. Он больше подходит для кабинетов, освещения компьютерных столов и прочих рабочих зон. Под его воздействием людям проще сосредоточится, внутренне мобилизоваться. Однако длительное пребывание в комнате с таким освещением повышает утомляемость примерно на 25 %.

Выбираем подходящее освещение для комнат
Упомянутые выше названия – «теплый» и «холодный» цвет искусственного потока – были созданы благодаря психологической ассоциации первого с согревающим и «родным» огненным светом, а второго – с отблесками на зимнем снегу.

В желтоватом свечении можно создать уютную домашнюю обстановку, придать своей квартире атмосферу защищенности и полной безопасности.
Помещения, освещенные в холодном цвете, помогут настроиться на рабочий лад.
Нейтральный белый свет является, по сути, компромиссным вариантом, расположенным между ними.

local.yandex.ru

В чем вред искусственного освещения — Рамблер/новости

Представить сегодняшнюю жизнь без искусственного освещения сложно. Мы давно уже принимаем его как должное. Однако влияние электрического света на человеческий организм далеко не однозначно.

Свет — друг

Немногие задумываются о том, как интенсивно влияет освещенность на наше физическое и психологическое состояние. Недостаток света на рабочем месте приводит к ухудшению концентрации внимания, снижению работоспособности мозга и общей усталости организма.

При недостатке света организм испытывает сначала мало заметные, но потом более ощутимые проблемы с опорно-двигательной системой. Нормы по минимальным уровням освещенности для всех рабочих мест внутри помещений и для рабочих мест вне помещений устанавливаются исходя из величины освещенности.

За «стандартный» источник был принят свет тепловых излучателей, ламп накаливания — их общий индекс цветопередачи принят равным 100, а освещенность среднестатистического рабочего места не должна быть ниже 70. Если рядом не оказалось люксметра, и вы сомневаетесь в соответствии «лампы Ильича» нормативам, поставьте дополнительные источники света — торшеры или настольные лампы.

Влияние на зрительные функции

Исследования, проведенные на грызунах, находящихся в течение длительного времени под искусственным освещением, неутешительны — крысы перестали исследовать территорию, у них были отмечены ухудшения скорости реакции и возможностей памяти.

Для человека чрезмерная доза яркого искусственного света — неизбежный путь к депрессии. Таким образом, у жителей мегаполисов, подверженных постоянному контакту с искусственными источниками излучения (ночные фонари, компьютерный монитор, световые эффекты ночных клубов) нарушаются биологические ритмы.

Тем не менее, без света мы становимся неспособны полноценно существовать и взаимодействовать с пространством, а если учесть ограниченность светового дня в средней полосе большую часть года, то человек попросту выпадает из жизни. В общем, не забудьте оплатить скопленные счета из трепетно заботящемся о нас ЖКХ и ограничивайте взаимодействие с искусственным светом в ночное время суток.

Синтез витамина D Витамин D3, он же холекальциферол, синтезируется в биологическом организме под действием ультрафиолета, который могут предоставлять некоторые виды электрических ламп, свет в которых идентичен солнечному. Ультрафиолетовые лучи проникают в эпидермис и вызывают разнообразные фотобиохимичсские сдвиги. При достаточном синтезе витамина D (соответственно, при полноценной дозе светового излучения) происходит полноценное всасывание кальция и фосфора, синтезируется ряд необходимых гормонов, регулярно и качественно развиваются процессы деления клеток.

Доказанный вред

Эпидемиолог из Центра здоровья Университета штата Коннектикут и эксперт в области действия света на наше здоровье профессор Ричард Стивенс пришел к выводу, что переизбыток искусственного света в темное время суток неестественен для организма и наносит вред сразу нескольким его системам и процессам.

Искусственный свет появился чуть больше века назад, и организм человека, не привыкший к такой дозе освещения в отсутствие солнца, испытывает проблемы с метаболизмом жиров и глюкозы. Как следствие — гормональные сбои, скачки кровяного давления. Искусственный свет ночью — это сбой в привычных нам циркадных ритмах, что повышает всплеск кортизола, гормона стресса, что увеличивает риск развития раковых заболеваний. Одним словом, наслаждайтесь искусственным светом как помощником и другом, но в темное время суток выключайте компьютер, закрывайте шторы от неоновой рекламы на соседних зданиях и реже заглядывайте в холодильник.

Сообщение В чем вред искусственного освещения появились сначала на Умная.

Видео дня. Дыры в полу: школьники показали грязные туалеты

Читайте также

news.rambler.ru

Влияние освещения на зрение

Трудно представить нашу жизнь без искусственного освещения. С появлением электричества человечество шагнуло вперёд. Современный человек может позволить себе в ночное время суток то, что не могли наши предки. Например, прочитать книгу, не прищуриваясь, улавливая свет от свечи или лучины. Но, так ли всё прекрасно с искусственным освещением? Как пользоваться этим благом цивилизации и не портить зрение? Ответ прост. Освещение в помещение должно быть правильным.

 

Люминесцентные лампа или лампы накаливания

 

В наше время развитие технологий идет огромными темпами во всех сферах жизни, но, несмотря на это, человечество до сих пор не изобрело лампу, которая излучает идеальный для наших глаз свет. Поэтому все споры о том, какие лампы лучше (накаливания или люминесцентные) не имеют никакого смысла, хотя о достоинствах и недостатках каждой из ламп и их влиянии на зрение, знать полезно.

 

Лампы накаливания отличаются равномерным светом, не мерцают, а поэтому не дают дополнительной нагрузки на глаза, но при этом излучают свет желтого оттенка, который, по некоторым сведениям, не очень полезен для глаз в вечернее время.

Люминесцентные лампы называют также лампами дневного света за яркость и высокую интенсивность белого света. Стоит отметить, что лампы мерцают, но уловить это нашему глазу практически невозможно. Однако, мерцание ламп, по мнению большинства ученых, негативно сказывается на нашем зрении.

 

Оттенок свечения

 

Какой же оттенок наиболее комфортен и безопасен для глаз? На данный вопрос ученые не нашли окончательного ответа. Существует две точки зрения: белый свет идеально повторяет яркость дневного и поэтому для глаз менее губительный. Другие утверждают, лампы дневного света не соответствуют параметрам естественного освещения, а значит, для глаз такой оттенок не менее вреден, чем.

 

Что насчёт светоотдачи

 

Многие предпочитают экономить электричество, используя лампы с пониженной светоотдачей. А вместе с этим, для здоровья глаз имеются чёткие параметры освещения, выраженные в таких единицах, как Люкс (Лк). Нормой нормального освещения считается:

 

- от 150 Лк/м2 для жилой комнаты и кухни;

- от 200 Лк/м2 для детской;

- от 300 Лк/м2 для кабинета или библиотеки.

 

То есть, если ваша жилая комната по квадратуре составляет 20 м2 минимально допустимой светоотдачей для вас будет 3000 Лк. Именно по данному параметру следует выбирать лампы, а не по потребительской мощности, так как одинаково 1000 Лк может обеспечить как лампа накаливания на 100W, так и светодиодная лампа на 17W.

 

Главное правило при выборе интенсивности освещения - не бросаться в крайности. Слишком яркое освещение также может стать причиной ухудшения зрения, а также вызывает головную боль и утомляет.

 

Слабое освещение, также кроме отрицательного эффекта на зрение, сказывается на общем самочувствии: человек становится вялым и сонным, снижается работоспособность.

 

Поэтому оптимальным вариантом будет умеренное по интенсивности освещение, можно также использовать светильники и настольные лампы, как вспомогательные источники света, но не как основные. Таким образом, при основном источнике освещения ваши глаза будут отдыхать, а при необходимости задействовать ваше зрение, вы сможете использовать дополнительный источник света с более высокой интенсивностью.

 

Ещё одним важным моментом является то, что свет должен быть рассеянным.

 

В заключении

 

Искусственное освещение оказывает большое влияние на зрение. При недостаточном освещении глазам приходится постоянно напрягаться, чтобы рассмотреть предметы, что приводит к различным глазным заболеваниям, таким как близорукость и астигматизм. Но, даже при достаточной интенсивности искусственного освещения, постоянно пользоваться только им вредно для здоровья. В дневное время в помещение должен проникать естественный свет в достаточном количестве. Кроме того, не забывайте чаще бывать на улице. Естественное освещение даже в пасмурную погоду полезнее нашему зрению, нежели искусственный свет.

 

www.zakazlinz.ru

Сильный и слабый искусственные интеллекты — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 февраля 2020; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 февраля 2020; проверки требует 1 правка.

Сильный и слабый искусственные интеллекты — гипотеза в философии искусственного интеллекта, согласно которой некоторые формы искусственного интеллекта могут действительно обосновывать и решать проблемы[1].

  • теория сильного искусственного интеллекта предполагает, что компьютеры могут приобрести способность мыслить и осознавать себя как отдельную личность (в частности, понимать собственные мысли), хотя и не обязательно, что их мыслительный процесс будет подобен человеческому.
  • теория слабого искусственного интеллекта отвергает такую возможность.

Термин «сильный ИИ» был введён в 1980 году Джоном Сёрлом (в работе, описывающей мысленный эксперимент «Китайская комната»), впервые охарактеризовавшим его следующим образом:

Соответствующим образом запрограммированный компьютер с нужными входами и выходами и будет разумом, в том смысле, в котором человеческий разум — это разум.

Оригинальный текст (англ.)

The appropriately programmed computer really is a mind, in the sense that computers given the right programs can be literally said to understand and have other cognitive states[2].

«Разумы, мозги и программы»

Предлагалось много определений интеллекта (такие, например, как возможность пройти тест Тьюринга), но на настоящий момент нет определения, которое бы удовлетворило всех. Тем не менее, среди исследователей искусственного интеллекта есть общая договоренность о том, что Сильный ИИ обладает следующими свойствами: [3]

Ведутся работы для создания машин, имеющих все эти способности, и предполагается, что Сильный ИИ будет иметь либо их все, либо большую часть из них.

Существуют и другие аспекты интеллекта человека, которые также лежат в основе создания Сильного ИИ:

Ни одно из этих свойств не является необходимым для создания сильного ИИ. Например, неизвестно, необходимо ли воспринимать машине окружающую среду в той же мере, как человеку. Также неизвестно, являются ли эти навыки достаточными для создания интеллекта: если будет создана машина с устройством, которое сможет эмулировать нейронную структуру, подобную мозгу, получит ли она возможность формировать представление о знаниях или пользоваться человеческой речью. Возможно также, что некоторые из этих способностей, такие, например, как сопереживание, возникнут у машины естественным путём, если она достигнет реального интеллекта.[источник не указан 46 дней]

  1. ↑ Аверкин А. Н. «ИИ и когнитивные науки» (неопр.). Дата обращения 15 февраля 2020.
  2. ↑ Searle, J. Minds, brains, and programs // Behavioral and brain sciences. — 1980. — Т. 3, № 3 (September). — P. 417. — DOI:10.1017/S0140525X00005756.
  3. ↑ Список базируется на следующих книгах: Russell & Norvig, 2003, Luger & Stubblefield, 2004, Poole, Mackworth & Goebel, 1998 и Nilsson, 1998.
  • Luger, George & Stubblefield, William (2004), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., с. 720, ISBN 0-8053-4780-1, <http://www.cs.unm.edu/~luger/ai-final/tocfull.html> 
  • Nilsson, Nils (1998), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-55860-467-4 
  • Russell, Stuart J. & Norvig, Peter (2003), Artificial Intelligence: A Modern Approach (2nd ed.), Prentice Hall, ISBN 0-13-790395-2, <http://aima.cs.berkeley.edu/> 
  • Poole, David; Mackworth, Alan & Goebel, Randy (1998), Computational Intelligence: A Logical Approach, New York: Oxford University Press, <http://www.cs.ubc.ca/spider/poole/ci.html> 

ru.wikipedia.org


Смотрите также